



Vectorized Earley Parsing enables parallelization

- 1. Vectorized: algorithm with matrices means the efficiency of this system scales with improved vectorized hardware (GPUs).
- 2. Parallelized: steps of the Earley algorithm are re in parallel using matrix operations.
- 3. Batched: vectorized implementation enables parallelization along the batch dimension.
- 4. Earley algorithm can parse any context-free language, making it a useful tool for interpretak language applications (comp. ling., neurosym., e

Task: parse *B* input strings $w^{1:B}$ with length *l*, give some parameterized grammar $G = \langle N, T, (S, S'), R, \theta \rangle$

Earley Parsing: as reading input string left-to-rig process states [rule dotstate ($A \rightarrow \alpha \cdot \beta$), start in (*i*), end index (*j*)] by complete, predict, or scan.

Batched Vectorized Earley Parsing

Celine Lee, Alexander Rush Cornell University

es	Vectorized Earley		
e	Perform Earley as a series of matrix opera start- and end- index dimensions. Suppor of the grammar relevant to Earley Parsing		
	Implemented using sparse matrices, l parsing can be efficiently executed		
run	Initialization Matrix : $I \in [0, 1]^{ D }$. $I[d] = \theta_A$ Transition Matrix : $T \in \{0, 1\}^{ N \cup T \times D \times D }$.		
	and d_{i} Completion Matrix : $C \in \{0,1\}^{ D x D }$. $C[d_{a}, and d]$		
ble etc.)	Support matrices help manipulate Earley indexed by batch entry, end index, start ir		
en θ> ght, ndex	Predict: $E[:,i,i,:] = I$ Predict all starting states with the same start and end Scan: $E[:,j+1,:,:] \bigoplus = E[:,j,:,:] \bigoplus T[w_j]$ E[:,j,:,:]: states with end index j $i \bigoplus T[w_j]$: for those with end index j		
	$\bigoplus \Rightarrow : \text{ and accumulate into existing values.}$ $\textbf{Complete: } E[:,j,:,:] \bigoplus = ((E[:,j,i,:] @ C))$ $E[:,j,i,:] : \text{ states with start index } i \text{ and exist index exist index } i and exist index exist index$		
	\oplus : and accumulate into existing values. Return: $E[:,l,0,d_f]$ Return the values associated with the final state [(S -		
	1: $E[:, diagonal, :] \leftarrow I$ 2: for $j = 0,, l$ do 3: for $i = j,, 0$ do 4: $v \leftarrow E[:, j, i] @C$ 5: $v \leftarrow v.reshape(B, l, D) \bigotimes$ 6: $E[:, j] \xleftarrow{\Phi} v @T.sum(0)$		

- 7: $E[:, j+1] \stackrel{\bigoplus}{\leftarrow} E[:, j] @T[w_j]$
- 8: return $E[:, l, 0, d_f]$

Batched Vectorized Earley fully parallelizes along the batch dimension and partially parallelizes along the start index loop.

Batched Vectorized Earley Parsing: Celine Lee, Alexander Rush, 10th Mid-Atlantic Student Colloquium on Speech, Language, and Learning. George Mason University, Arlington Campus, Virginia. 2023

y Parsing

rations along dotstate (D) and rt matrices encode properties ng. All matrices are sparse.

Batched Vectorized Earley l on vectorized hardware.

$$A \rightarrow \alpha iff d \sim^{D} A \rightarrow \bullet \alpha$$

$$T[s,d_{a},d_{b}] = 1 iff d_{a} \sim^{D} A \rightarrow \alpha \bullet sfi$$

$$U_{b} \sim^{D} A \rightarrow \alpha s \bullet \beta, where \ s \in N \cup T$$

$$(d_{b}) = 1 iff d_{a} \sim^{D} A \rightarrow \alpha \bullet$$

$$(d_{b}) = 0 \text{ and } \delta \beta$$

$$(Chart : E \in [0,1]^{B \times I \times I \times |D|}, \beta$$

$$(Dec) = 0 \text{ bound} \delta$$

$$(De) = 0 \text{ bound} \delta$$

d index.

 w_i as the next token; copy scores into the n the next time step

end index j nbined by source nonterminal, that nonterminal next after the dot

iply with states with end index *i* to get joint scores ems, indexed by pre-dot-progressed result state (*a*) *T.sum*(0) : advance to result dotstate

 \rightarrow S'•), i=0, j=l].

▷ Prediction

▷ Completion

 $\mathbf{O}E[:,i]$

▷ Scanning

	Viterbi		Inside	
	Serial	Vectorize	Serial	Vectorize
B = 2	0.0045 s	0.00414 s	0.0010 s	0.0030 s
B = 8	0.0182 s	0.0079 s	0.0040 s	0.0043 s

Earley parsing can be used for any grammar-based processes. Vectorizing Earley parsing enables Earley parsing over larger grammars and inputs as the capabilities of vectorized hardware machines scale.

Earley Parsing Properties

States must obey the **partial order relation** ≤ : If $A \leq B$ then B must be processed after A is processed. States within the same partial order can be processed in parallel.

 $A \le B \text{ iff either:} \begin{cases} j_A < j_B \\ j_A = j_B \text{ and } i_A > i_B \end{cases}$

This partial order must be maintained for Earley parsing implementations to be correct.

Processing operations \oplus , \otimes , (a) can be implemented according to any parsing semiring^{*} (inside, Viterbi, derivation forest, etc.), and the algorithm remains the same.

Parsing can be conducted in any semiring.

Results

Simple grammar (13 rules); inputs length ~ 5

Impact